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Abstract. Starting from the exact result of Majumdar and Ghosh for the dimerized 
ground state of a Heisenberg S = $ antiferromagnet with competing next-nearest 
neighbour interaction 51 = l/2J1 on a linear chain, it is shown that this state is 
the ground state of the m e  kind of Hamiltonian, if couplings are extended up to 
2n-nearest-neighbours. and the relation JI = 2n, J z  = 2n - 1,. , , , Jzn = 1 holds. 
Furthemore, it is proved rigommly that this state is the ground state when n = 2 
and JI - ZJz t J3 = 0, 53 = 2J4, in a finite interval of values of the parameter J4 .  
A rigomus lower limit for the extension of this interval is found to be 0 5 J4 5 t 51. 
A comparison with ground-state configurations of the equivalent classical Heisenberg 
and king model is discussed 

1. In t roduct ion  

Since the discovery of high-?: superconductors an ever-increasing interest has been 
focused on frustrated Heisenberg antiferromagnets, which are believed to describe the 
magnetic properties of these compounds. Many exact results have accumulated in the 
meantime, mainly on ID models, or on higher-dimensional models often devised to 
yield a previously assigned ground state. 

Frustration is most usually introduced in the formof competing exchange couplings 
extending beyond nearest neighbours; this kind of frustration is ‘resolved’ in classical 
spin models through the appearance of helical states [l], but evidence from spin-wave 
[2-41 and numerical [5] computations point to a possible disordering of the ground 
state in 2D as an effect of quantum fluctuations. 

In one dimension the ground state of nearest-neighbour (NN) antiferromagnets with 
S = 1/2 is disordered, but antiferromagnetic next-nearest-neighbour (NNN) couplings 
induce a qualitative change of behaviour: at  a critical value of j2 E J , / J ,  a gap opens 
in the excitation spectrum [6,7] and ground-state correlations change from power-law 
to exponential decay. The ground state itself suffers a transition from the ‘Bethe 
ansata’ to a ‘dimer’ phase, i.e. a state where short-range two-spin singlets dominate 
the wavefunction. This is known [S, 91 to become the exact ID  resonating valence bond 
(RVB) state, where only NN singlets contribute, with equal weights, at  j ,  = 1/2. 

I have studied the effect of including further neighbours in the Hamiltonian, mc- 
tivated by the fact that frustration induced by hole motion can be simulated via 
effective Heisenberg Hamiltonians with extended couplings [lo]. Previous results have 
appeared in [ll]. In this paper I will show that the RVB state is the exact ground 
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state if any even number 2n of neighbours is included, provided the exchange integrals 
satisfy the chain of equalities J ,  = 272, J ,  = 2n - 1 , .  ' I ,  J,, = 1. Taking n = 2, I will 
prove that this state is the ground state for 0 5 J4 5 1/4 J , ,  if the following condition 
holds: J ,  - 25, + J3 = 0, J3 = 2.7,. A comparison with the ground states of classical 
Heisenberg and king models shows that the RVB state appears in the helical phase of 
the former and exactly on the boundary between the Ne61 and antiphase(2) of the 
latter, and corresponds to an infinitely degenerate state of the king model. 

The plan of the paper is as follows. Section 2 is devoted to the investigation of 
the quantum ground state, section 3 to the classical Heisenberg, and section 4 to the 
king model. Section 5 is left for discussion and conclusions. 

2. Quantum Heisenberg ant i fe r romagnet  

The Hamiltonian is the usual bilinear exchange, of the form 

n 

31 = J ,  Si. Si+a, 
,=1 6, i 

where 6, is a vector joining site i to its 0 t h  neighbours on a linear chain. J1 is assumed 
positive, while further coupling constants can have either signs. I will take a slightly 
unusual attitude, in rewriting this Hamiltonian by way of a graph-theoretic device, 
the adjacency matrix of the lattice [12], i.e. a matrix A whose element Aij is 1 if sites 
i and j are nearest-neighbours on the lattice, and 0 otherwise. It is a property of the 
one-dimensional Euclidean lattice. but not in general of higher-dimensional ones, that  
sites which are a t  a certain distance in terms of Euclidean metric, are a t  the same 
distance in terms of chemical length, that is the minimum number of bonds joining 
them. Since the element (A")ij of the nth power of the adjacency matrix, is equal to 
the number of paths consisting of n bonds between sites i and j ,  it is possible to write 
the Hamiltonian i n  (1) as a polynomial in A. To he specific, consider NN and NNN; 
then we can write 

31 = C S i P i j S j  
i j  

with 

P = J,A + J2 (Az - 21) (3) 

because 

= 6j,,-z + 6j,i+z + 26, (4) 

(here 6ij  is the Kronecker delta). 

ground states for S = 1/2, the dimer states IQ:), defined as 
As previously mentioned, i t  is known that for J, = 25, there are two degenerate 

IQ3  = M I )  A 111,) (5) 
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where, in the thermodynamic limit, 

with an almost universal notation for the twc-spin singlet [ i , i  + 11 5 (a(i)P(i + 1) - P ( + O  + I)), m ( i )  = (1,0), P( i )  = (0,1). 
I t  is a simple identity to rewrite P as 

P = (J1 - 2J,)A + J2(A + 1)' - 3J2l (8) 

and therefore at  J ,  = 1/25, equation (2) becomes 

'H = C S i  [ f J l ( A  + 1)'- $J, I I i j  S,. 
i j  

(9) 

It is not difficult to realize that this is exactly the Hamiltonian in equation (1) with 
n = 1 and J ,  = 25,. However, we can profit of equation (9) to write the Hamiltonian 
in the form 

In fact, leaving constants aside, 

from which equation (IO) immediately follows. 
It is now straightforward to show that 

imum eigenvalue, by means of the property 
and I$,) are eigenfunctions with min- 

S, (Si + Sj)[ i , j ]  = 0. (12) 

The advantage in the use of the adjacency ma t rk  formulation is that  it can be 
easily extended to  further neighbours interactions. 

First of all, notice that NN dimers minimize the total spin of any odd number of 
consecutive spins; and since they are, ils can be esplicitly checked, eigenstates of any 
Hamiltonian of the form 

(13) 
~ = ~ ( s i _ , + s i _ , + ] + " ' S i + ' . . s .  ) 2 

*+" 
i 

are the ground states for such Hamiltonians. To see this, lay on the linear chain 
lattice one of the two NN dimer coverings, I & ) ,  say, and consider 2n + 1 consecutive 
spins. Then is an eigenstate with eigenvalue -!.Il, since 2n spins are in a singlet 
state. The following term in the Hamiltonian is another block of 2ra + 1 spins, shifted 
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by one site along the chain. Again 2n spins are in a singlet, and so on, proving that 
I$,) (and therefore I&)) is an eigenstate (actually the lowest-energy one) of the whole 
Hamiltonian in equation (13). 

From a direct expansion of the squares in equation (13) one can see that NN 
couplings are counted 2n times, NNN 2n - 1 times, and so on up to 2nth neighbours 
which are counted once. This allows the identification of this Hamiltonian with the 
one in equation (l) ,  letting J ,  = 2n, J ,  = 2n - 1, ". , J,, = 1. If n = 1 this is the 
previously treated case, so now let n = 2. Equat.ion (13), in terms of the adjacency 
matrix, is 

(14) 
2 

(Sj-2 + Si-,+ S, + Sjtl + Sjt,)z = c S j  (A2 + A  - I ) j j  Sj .  

This includes couplings up to fourth-" (FNN), that is 

i j  

J3 (A3 - 3A) J ,  (A4 - 4AZ + 21) . 

Since now the parameter space has enlarged, we ask whether I@$) are eigenstates, 
possibly ground states, on a larger region than the single points given by the conditions 
J ,  = 2, J ,  = 1, J3 = 5, = 0 and J ,  = 4, J ,  = 3, J3 = 2, J4 = 1 seen above. We 
therefore start  from the beginning, writing matrix P so as to include TNN and FNN 
interactions. After a little algebra, we get 

P = (5 ,  - 2Jz - 35, + 8 J 4 ) A  + ( J z  - 35,) (A t 1)' 

+ (J3 -2J4)A3+  J 4 ( A Z + A - I ) 2 - ( 3 J 2 - 4 J 4 ) 1 .  (15) 

Notice a t  this point that letting 

J ,  - 2 4  t J3 = 0 25, = J3 (16) 

we find a Hamiltonian that 'interpolates' between those given by equation (10) and 
equation (14) (that is equation (13) with either n = 1 or n = 2) 

P =  $ ( J l - 4 J , ) ( A + l ) 2 + J 4 ( A 2 + A - I )  -$ (3J l -2J4 ) l  (17) 
2 

X = f ( J 1  - 4J4) (Si-, + St + Sttl)2 
i 

We can immediately check that letting either J3 = J ,  = 0, J ,  = 2, J ,  = 1, 
or J ,  = 4, J ,  = 3, J3 = 2, 5, = 1, we obtain equation (13) with n = 1 or n = 2, 
respectively. I t  is equally straightforward to realize that the two spin-dependent terms 
are positive, as long as 

0 5 5, 5 $J1 (19) 

and IQ:) are then the ground-state wavefunctions in this range, since they mini- 
mize each term in a sum of positive addenda. What happens outside the interval 
in equation (19)? As long as we remain on the l i e  defined by equation (16) above, 



Spontaneously dimerized ground states 449 

5, = 0 means J ,  = 25,. At this point it has been shown by Affleck el aI [9] that no 
other state exists degenerate with [U:), so that this must be the ground state even 
for small negative values of J4. Exact diagonalization of finite chains ( N  5 12) gives 
the following approximate bounds on the interval where I*:) are ground states [11] 

- 0.25 5 j 4  5 0.25 N = 6 
N = 8  
N = 1 2  

showing that the interval s e e m  to extend outside the rigorous lower bound given by 
equation (19). 

We now turn to a brief examination of the ground-state configurations of the 
classical vector spin model. 

- 0.5 5 j4 5 0.3 
- 0.3 5 j4 5 0.3 

3. Classical Heisenberg antiferromagnet at T = 0 

We show in figures 1 and 2 sections at  constant J4 of the T = 0 phase diagram, as a 
function of J ,  and J3. We consider explicitly only the ground-state energy on the line 
given by equation (16), that is 

E(Q) = i J , N S Z  [(l - 4j4)(l  +2cosQ)’ +j4(4cos2Q + 2cosQ - 1)’ - (3 - 2 j4 ) ]  

(20) 

where we defined j ,  E J4/J1. For j ,  5 -0.7825, determined numerically, the ground 
state is ferromagnetic (Q = 0), and modulated for j4 larger than this value. The 
transition is first order. Although it is not possible to give an analytical expression 
for the modulation wavevector along the whole line parametrized by j , ,  it is easy to 
see that at  j ,  = 0 Q = & $ x ,  while at  j ,  = a two helices coexist, whose pitches are 
Q, = & $ x  and Q, = & $ x .  Spin-wave excitations can considerably change the picture. 
Consider for simplicity only NN and NNN interactions (it means we are considering 
parameters along the j, = 0 line in figure 1); in this case the ground state changes 
from antiferromagnetic to helical at  j ,  = i, but since zero-point fluctuations are the 
larger the more collinear the configuration, we espect that the antiferromagnet-helix 
boundary shifts towards the helical phase, enlarging the stability region of the Ned 
state. 

Since it is not possible to compute the zero-point energy of a certain phase in the 
region of parameter space where this phase is unstable in the classical approxima- 
tion, I have resorted to  a perturbative approach devised by Harris and Rastelli [13] 
to investigate the effects of quantum fluctuations on the ferromagnetic-helical phase 
boundary. Spin operators are realized in terms of Dyson-Maleev bosonic operators, 
and the expectation value of the resulting Hamiltonian on the ferromagnetic ground 
state, which is classically stable where the ferro-helix transition is continuous, is ex- 
panded in powers of Q. This is meaningful since on the considered line Q = 0, so that 
Q is a valid perturbative parameter. The coefficients of this power series contain all 
orders in 1/S, S being the quantum spin number, and it is fortunately possible to sum 
up all these contributions for the first coefficients, up to Q4, thus evaluating them to  
all orders in 1/S [14]. In the present case the expansion is made around Q-T, but the 
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Figure 1. Section a j4 = 0 of the zero-temperature phase diagram of the classical 
Heisenberg linear antiferromagnet with competition up to fourth-nearest-neighbow. 
AF marks the Ndl  phase, F the ferromagnetic and H the helical one. The broken 
line has the equation 1 - 2jz + j3  = 0 (see text). The chain line is the locus of 
an infinitely degenerate phase where the spin chain is decoupled in two independent 
sublattices antiferromagnetically ordered (Q = 7r/2a). T is a tricritical point where 
the first-order AF-H transition line (to the right of T) merges into the continuous 
AF-H border (to the left of T). 

L . L I  
Figure 2. Same as figure 1 but for j - 4 = f .  Notice that the infinitely degenerate 
phase mentioned before is not present at this value of j,. 

situation is not as fortunate as with the ferromagnet; in fact the first coefficients can 
be evaluated, but only to first order in 1/S. In this way we find that the antiferro- 
helix transition occurs at j ,  = when quantum effects are accounted for [15], a result 
that seems to overestimate the real extension of the Nekl-like phase, since numerical 
results on finite chains [16] point to a transition at  j ,  = f. I t  should also be noted 
that more sophisticated perturbative calculations [17], also accounting for dimerized 
phases, seem to indicate a Ned-dimer transition near the classical instability point 
j ,  = a. These two findings are not at  variance, since even in the dimer state one 
has ground-state correlations with a Q = ?r modulation; at  j, = f ,  for instance, the 
Fourier transform of the correlation function is S ( k )  = f(1 - cosk), and is therefore 
peaked at k = A, while the ground state is obviously dimerized. 

We turn now to the investigation of another classical model, the Ising model, which 
can also be seen as an extremely anisotropic limit of Hamiltonian (18). 
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Figure 3. Section at j4 = 0 of the zero-temperature phase diagram of the linear 
chain Ising antiferromagnet. The symbol (n) marks a phase where spins alternate 
with periodicity n (e.g. n = 2 means two spins up followed by two spins down and so 
on; (12) means one up, two down (CO) is the ferromagnetic ordering). The location 
of the completely dimerized state in the quantum antiferromagnet is signalled by a 
full dot marked d. 

Figure 4. Same as figure 3 but for j 4  = i .  

4. king antiferromagnet at T = 0 

The ground state of a frustrated Ising chain has been extensively treated in literature 
[18-211. In figures 3 and 4 sections at  constant j, of the phase space are shown, for 
the same parameters as before. A full dot signals the location of the dimer state in 
the corresponding quantum model. Notice that the dots fall on the border between 
Ne4 ((1)) and antiphase-2 ((2)); in fact, this line has equation 1 - 2j2 + j, = 0. 
To understand the relationship between these happenings, we proceed in this way: 
take a pair of adjacent antiparallel spins in phase (2); the energy per spin in this 
phase is e( , )  = -2j2 + 2j4. If we overturn the pair we pay an energy cost A e ( 2 )  = 
-2(1- 2j, + 2j4). In the Ne41 phase the same operation has an energy cost A e ( , )  = 
2(1 - 2j2 + 2j, - 2j4). We then come out with the result that, if A e ( , )  = A e ( , )  = 0 ,  
that is equation (16), we can flip pairs of spins inside both phases at zero energy cost; 
or, in a ‘quantum’ language, pairs of antiparallel spins are free to resonate between 
‘up-down’ and ‘down-up’. It is not so surprising, therefore, that dimer states are the 
ground states of the S = f quantum model at  the point given by equation (16). Notice 
that at  the classical level the dimer state has as a counterpart an infinitely degenerate 
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state; this is interesting since one can devise infinitely degenerate ground states even 
for ZD frustrated Isiug [22] and classical Heisenberg 1231 models. 

Let us  finish this section by noting that this infinitely degenerate state is the ground 
state of the present king model for 0 5 j, 5 $ (always on the line defined by equation 
(16)), and is superseded by a (21) (‘two-up-one-down’) phase for -$ 5 j4 5 $ and 
by phase (3) for j4 2 $. At j, = -a t he ground state becomes ferromagnetic. 

5 .  Discussion and conclusions 

We can see that  some features of quantum S = 4 frustrated ID antiferromagnet are 
better approximated by the related Ising model than classical Heisenberg; I refer in 
particular to the persistence of Neil-like correlations in the ground state up to j ,  = 4 
(and j ,  = j, = 0, figure 3), and the presence of dimerized states a t  the same points 
in parameter space. For Heisenberg spins, the topology of the order parameter space 
(see [24] for terminology) is different in the collinear and in the helical phase: in a 
collinear phase the order parameter space is homeomorphic to S0(3)/S0(2) = S,, the 
ZD sphere, while in the helical phase (as well as in the ‘120” phase of a triangular 
antiferromagnet) i t  is S0(3), since one needs two orthogonal versors to fix the plane in 
which the helix [25] lies. The two possible choices of the helicity (chirality) introduce 
an Ising-lie 2, structure, which corresponds to stable point defects (mathematically 
one would say that the first homotopy group is non-trivial, II,(S0(3)) = Z2).  This 
should lead to the appearance o f a  finite-temperature Ising behaviour [17] in the ground 
state of quantum models in 1 + 1 dimensions, mapping classical.thermal fluctuations 
on quantum ones, which is in agreement with our results. 

In conclusion, we have rigorously proved that the NN dimer covering o f a  ID lattice 
is the ground state of a frustrated, S = $, Heisenberg antiferromagnet, for particular 
values of competing couplings beyond nearestneighbours, generalizing the result of 
Majumdar and Ghosh. At present we are studying numerically the behaviour of the 
ground-state and of triplet excitations for the case of interactions up to fourth-nearest- 
neighbours. and these results will be reported elsewhere. 
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